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Abstract. The time-dependent treatment of positron-hydrogen scattering for a zero total angular momen-
tum has been presented. The initial wavefunction of the positron-hydrogen scattering system has been
expanded in terms of three dimensional dynamical wave functions to include all higher angular momenta
by solving a set of three coupled differential equations. This wavefunction is then time evolved using Taylor
series expansion of the evolution operator. The excitation probabilities are monitored as the wavefunction
propagates until there is no more change in the probabilities. The positron impact excitation cross-sections
extracted from the final wavefunction are compared with the available results of converged close coupling
approach.

PACS. 34.80.-i Electron scattering – 34.85.+x Positron scattering – 36.10.Dr Positronium, muonium,
muonic atoms and molecules

1 Introduction

Positron-hydrogen scattering system has three simplest
and well defined charged particles, namely; electron,
positron and proton. The simplistic nature of this scat-
tering system is very attractive in the implementation of
new theoretical methods. There has also been a grow-
ing interest in understanding the details of the origin of
511-keV annihilation radiation, which has been observed
to be coming from the center of Milky Way galaxy and
from solar flares [1,2]. Another interesting study involving
this scattering system is on the creation of antihydrogen
atoms resulting from positron transfer from the positron-
ium to antiprotons [3].

Many theoretical treatments used in this field has been
based on the solution of the time-independent Schrödinger
equation [4–8]. Unfortunately, there has been disagree-
ment in the results obtained within the intermediate
energy range from these different approaches. Most of
these methods do not include the positronium channels
in the wavefunctions thus neglect the positronium con-
tributions. This exclusion does not affect the results in
the low and high energy regions where the positronium
channels are not important [8–11]. Resonance have been
observed from the multi-channel close coupling calcula-
tions, which should be reliable in the intermediate energy
range [12–18]. The calculations based on the hyperspher-
ical close coupling method [19] contradicted the existence
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of those resonances. The use of an over complete basis
set and the possibility of double counting [20] is the ma-
jor drawback with close coupling methods, which expand
in terms of wavefunctions centered on both the proton
and positron. However, when the positronium states are
not included to avoid this double counting, the expan-
sion becomes unreliable near the positronium formation
threshold.

The most recent calculations in this field was based on
the time-dependent close coupling (TDCC) approach [20].
However, this method exhibits slow convergence of the
number of individual angular momentum (`1, `2) pairs,
which are summed over for each total angular momen-
tum L. The results from TDCC are very sensitive to
the number of these pairs. Therefore, a significant num-
ber of these pairs are required for each L, which is not
possible due to the computational limitation. Another
time-dependent approach similar to TDCC but uses the
Chebychev propagation scheme and Fast Fourier Trans-
form to compute the integrals has also been developed
and applied [21] to the S-wave model of Tempkin-Poet.
This method would require large-scale calculation of par-
tial waves, which are needed in the scattering flux for
the real atomic system, a problem already noticed with
TDCC [20]. Therefore, a method, which would automat-
ically include all the scattering channels would be desir-
able.

Positron-hydrogen scattering process is inherently a
time-dependent process. Thus a time-dependent treat-
ment is attractive. An approach that involves a direct
integration of the time-dependent Schrödinger equation
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(referred to as the time-dependent Hylleraas (TDH))
method has been developed [22–28]. In this method, the
system wavefunction is expanded in terms of three dynam-
ical variables (two radial and one angular components)
and then time evolved from the initial known state. This
approach is reliable for all energy ranges and represents
an attractive alternative approach for the intermediate en-
ergy range. It is also free from any approximation inherent
in the TDCC method. The fact that the e+ + H scatter-
ing problem does not have exchange terms due to the dis-
tinguishability of the particles reduces the computational
time. The goal of this paper is two fold: (1) to extend
the TDH method to study the positron-hydrogen scatter-
ing system as one of the tests for its universal application
and (2) to provide an independent check on the conver-
gence of the TDCC method for the case of total angular
momentum of zero (L = 0).

2 Theory

The time-dependent Schrödinger equation for positron-
hydrogen scattering system has the form

HΨLM(r1, r2, t) = i
∂

∂t
ΨLM(r1, r2, t), (1)

where ΨLM(r1, r2, t) is the initial three-body wavefunc-
tion for the system for a fixed total angular momenta L,
projection M and parity $. The vectors r1 and r2 locate
the electron and positron with respect to the assumed in-
finitely massive nucleus, which is fixed at the origin.

The non-relativistic Hamiltonian H of equation (1) for
positron-hydrogen system (units in a.u.) takes the form of

H = −1
2
(
∇2

1 +∇2
2

)
+
Zq1
r1

+
Zq2
r2

+
q1q2
|r1 − r2|

, (2)

where Z (= 1) is the nuclear charge while q1 (= −1) and
q2 (= 1) are the electron and positron charges, respec-
tively.

The formal solution to equation (1) has the form
of [23–28]

ΨLM(r1, r2, t+∆t) = e−iH∆tΨLM(r1, r2, t). (3)

The evolution operator, e−iH∆t of equation (3) is eval-
uated using the Taylor series expansion, with maximum
number of terms included to ensure its convergence. The
initial wavefunction, ΨLM(r1, r2, t = 0), can be expanded
as [23–28]

ΨLM$ (r1, r2, t = 0) =

1
r1r2

L∑
`1=$

ψ`1(r1, r2, ϑ, t = 0)YLM`1,L+$−`1(r̂1, r̂2). (4)

The expansion coefficient ψ`1 is referred to as dynamical
wavefunction. `1 is the angular momentum of the positron
and $ is the parity ($ = 0 for this even parity case). The
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Fig. 1. Initial system wavefunction for energy of 30 eV with
electron and positron at nearly zero degrees (ϑ = 4.1◦) from
each other for L = 0. The positron is lying on the line passing
through the center of the nucleus.

angular momentum of the electron, `2 is (L+$−`1). The
primary advantage of this approach lies in the fact that
including ϑ in the expansion coefficient results in a small
summation with (L+ 1) terms instead of an infinite over
all possible (`1, `2) pairs. In fact, for the L = 0 with even
parity, both the `1 and `2 are zero, therefore there is only
one term in the expansion of equation (4).

The initial dynamical wavefunction of equation (4) is
formed from the product of the hydrogen atom ground
state wavefunction and a positron projectile wavepacket.
Let φn`2(r) represent eigenstates of the hydrogen atom, n
is the atomic energy level with `2 being the orbital an-
gular momentum. Let χε`1(r) be an incoming positron
wavepacket with energy ε and angular momentum `1. The
incoming positron wavepacket can be represented as

χε`1(r) =
−ikr

(b2π)
1
4

e−
(r−a)2

2b2 h−`1(kr). (5)

This wavepacket is composed of an incoming spherical
Hankel function h−`1(kr) multiplied by a Gaussian shape
function that localizes the wavepacket and defines its po-
sition, a and spatial spread, b. Since the ground state hy-
drogen atom wavefunction has `2 = m2 = 0, the angular
momentum of the wavepacket will be equal to the total
angular momenta for the system. For a system with zero
total angular momentum, the dynamical wavefunction of
equation (4) is expressed as [28]

ψ`1(r1, r2, ϑ, t = 0) = φn0(r1)χε0(r2). (6)

Figure 1 shows the initial wavefunction plot of equa-
tion (4) for a projectile with energy of 30 eV, with the
positron and electron being at near zero degrees (ϑ = 4.1◦)
from each other. The wavepacket has a Gaussian width of
3.0 a.u. and centered at 10.0 a.u. along the r2 direction.
The hydrogen ground state wavefunction lies along the r1
direction.
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Table 1. Energies of the hydrogen atom bound states. Numerical energies were generated using basis spline collocation al-
gorithm [31] with 60 grid points on a 30 a.u. grid size. The number in parenthesis is the power to base ten. The units are
in a.u.

Bound states Numerical Analytical % error

n s p d s s

1 −5.13(−1) −5.00(−1) 2.7(0)

2 −1.26(−1) −1.25(−1) −1.25(−1) 6.2(−1)

3 −5.56(−2) −5.56(−2) −5.55(−2) −5.60(−2) 2.0(−2)

The probability that the electron is in the nlm bound
state while the positron is in any possible state, PLMnlm , may
be obtained by projecting the electron bound state onto
the full wavefunction [29,30]

PLMnlm (t) =
∫
|〈〈φnlm(r1)|ΨLM (r1, r2, t)〉〉|2dr2, (7)

where φnlm(r1) describes a possible electron bound state
of the atom, ΨLM(r1, r2, t) is the time-dependent wave-
function for the two-particle system and the double
bracket indicate integration over r1 only.

The time-dependent transfer probability is given by

PLMtransfer(t) = 1−
∑
nlm

PLMnlm (t). (8)

The excitation cross-section is obtained from the asymp-
totic probability using [20]

σLMnl =
(2L+ 1)π

k2

∑
m

PLMnlm (t = T ), (9)

where T is the final time, k is the wavepacket momen-
tum and L is the total angular momentum, which is equal
to zero in the present work. The transfer cross-section is
calculated using [20]

σLMtransfer =
(2L+ 1)π

k2
PLMtransfer(t = T ). (10)

3 Results

3.1 Numerical parameters

The numerical discretization of the wavefunctions and rep-
resentation of operators were achieved using basis spline
collocation algorithm [31]. To adequately discretize the
initial wavefunction of equation (4) in the grid, the two nu-
merical radial distances r1 and r2 were chosen to extend to
30 a.u. with 60 optimum grid points each while the max-
imum of angular component was 180◦ i.e. π radians with
12 grid points. The boundary conditions were set such that
the wavefunction vanishes at the walls. With these require-
ments, the first grid point is located at (0.25, 0.25, 4.1◦)
while the last one is at (29.75, 29.75, 171.9◦). 60 grid points
produce essentially 60 pseudo energy levels (here after des-
ignated by n). Out of these 60, only the first three grid

points produced reliable physical bound states as shown
in Table 1. Thus, the excitations up to n = 3 hydrogen
bound states are considered in this work. The t = 0 plot
of Figure 1 shows the probable distance of the hydrogen
atom 1s bound state as 1 a.u. along r1 direction, which
agrees with the analytical probable distance. At t = 0 a.u.,
the system wavefunction was set up such that there was
no initial interaction between the positron and the atom.

3.2 Positron impact inelastic excitation probabilities

To illustrate the interaction processes within the interme-
diate energy range, a positron impact energy of 30 eV was
chosen. This initial energy is well above the positronium-
formation (6.8 eV) as well as above the ionization poten-
tial of hydrogen (13.6 eV). As time progresses, there will
be three distinctive phases. In the first phase, there should
be no interaction between the projectile and atom. Con-
sequently, the two systems should be as far apart as prac-
tically possible. In this phase, the excitation probabilities
should be zero.

The second phase is the interaction region. In this
phase, the projectile wavepacket overlaps the atomic wave-
function and both wavefunctions become dramatically dis-
torted. It is in this phase that the state of atom is ex-
pected to be changed as well as the state of the positron
wavepacket. During this phase, many processes such as
positron and nucleus excitations, multiple transitions and
multiple decays could possibly take place. The excitation
probabilities should be maximum.

The final phase is the post-interaction region where the
projectile and the atom are separated. In this phase, the
only changes that should be observed with increasing time
is the motion and the spreading of the wavepacket for the
continuum particles. Figure 2 shows the final wavefunction
for the projectile energy of 30 eV with the positron and
electron at near zero degrees (ϑ = 4.1◦) from each other.
There are several possible consequences of the interaction
process that can be inferred from this final phase. As the
positron emerges out, it could leave the atom excited to
one of many possible states or the atomic electron may
gain enough energy from the positron to escape leaving
the hydrogen atom ionized. The escaping electron could
possibly combine with the positron to form positronium
or may annihilate the positron to form a photon.

Figures 3 and 4 show 2s, 2p, 3s, 3p, and 3d
time-dependent inelastic excitation probabilities at the
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Fig. 2. Final system wavefunction for energy of 30 eV with
electron and positron at nearly zero degrees (ϑ = 4.1◦) from
each other for L = 0. The positron is lying on the line passing
through the center of the nucleus.
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Fig. 3. Time-dependent probabilities for exciting the n = 2
states at 30 eV positron impact energy using the present TDH
method for L = 0.
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Fig. 4. Same as Figure 3 but for n = 3.
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Fig. 5. Cross-sections for positron impact exciting 2s, 2p, and
3p atomic hydrogen states as a function of the incident positron
energy for L = 0. The theoretical results are as follows: solid
curve with dots at data points, present TDH results, stars,
TDCC results (Ref. [20]).

intermediate positron impact energy of 30 eV. The proba-
bilities are calculated from the time-dependent wavefunc-
tions using equation (7). The excitation probabilities for
the s states are zero between times of 0 and 2.5 a.u., then
increase to maximum at about t = 10 a.u., there after re-
main stationary. For the p states, the probabilities start
building up much earlier at t = 1 a.u., grow to maxi-
mum values then start falling off monotonically to about
t = 12 a.u. leaving behind humps. The probabilities then
re-build up again up to maxima at about t = 20 a.u. and
remain flat for the rest of the time. The s states contribute
more than twice the p states. The shapes of the curves in
general represent the above described three phases in the
collision process. The fact that the excitation probabilities
have reached their asymptotic values indicates that the in-
teraction process is over. The probability humps seen only
with the p states could be due to the dipole allowed tran-
sitions associated with such states.

3.3 Positron impact excitation and transfer
cross-sections

The time-dependent excitation cross-sections are calcu-
lated from the time-dependent asymptotic probabilities
using equation (9). The cross-sections must be calculated
when the projectile wavepacket is at a large distance from
the interaction region as represented by Figure 2. In this
final wavefunction (Fig. 2), the larger hump primarily con-
tains all the excitation information while the flat region
behind the hump contains ionization process. The smaller
hump along the r1 = r2 contains the positronium informa-
tion. Figure 5 shows the inelastic excitation cross-sections
for the 2s, 2p and 3p states at the positron impact energies
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Table 2. Excitation cross-sections of hydrogen atom by positron at different intermediate impact energy range for L = 0. The
units are in πa2

0. The number in parenthesis is power to base 10.

TDH TDCC [20]

Energy (eV)/nl state 2s 2p 3p 2s 2p 3p

30 1.76(−2) 1.05(−2) 2.23(−3) 1.94(−2) 1.23(−2) 3.30(−3)

40 1.80(−2) 5.30(−3) 1.22(−3) 1.84(−2) 6.30(−3) 2.00(−3)

50 1.48(−2) 3.18(−3) 7.61(−4) 1.50(−2) 3.40(−3) 1.30(−3)

Table 3. Transfer (combination of positronium and ioniza-
tion) cross-sections for the positron-hydrogen scattering. The
results are tabulated for the available typical energies from
TDCC [30] calculations for L = 0. The cross-sections are in
the units of πa2

0. The results agree with each other to 3 deci-
mal places.

Energy (eV) TDH TDCC [30]

30 0.0264 0.026

40 0.0350 0.035

50 0.0360 0.036

of 30, 40 and 50 eV for the system total angular momen-
tum of zero (L = 0). The solid curve with circles at data
points is the present TDH results. For comparison, the
only other available theoretical calculations for the L = 0
TDCC [20] (stars) cross-sections are also displayed. Ta-
ble 2 is the representative of the plotted values of the
TDH and TDCC calculations. The TDH and TDCC 2s
results are in better agreement than 2p and 3p. The 3p re-
sults show the worst comparison. However, the agreement
improves with the increase in energy for the presented ex-
cited states. In general, TDCC results are larger than the
present TDH results. This trend of disagreement is not
unique to the positron impact alone since it had also been
observed in the case of the electron impact [27] where the
disagreement was attributed to the non-convergence of
the close coupling wavefunctions at lower energies. Since
the present TDH method is free from any approximation
and gave good agreement with the available results from
other methods in the case of electron impact, it is possible
to say that the TDCC results presented here had not con-
verged. Admittedly, the excitation results presented here
may not be adequate for a hard conclusion. For example,
it would be interesting to see how the 3s and 3d results
compare.

Table 3 shows the transfer cross-sections obtained from
the present TDH and TDCC [30] approaches. The two
calculations gave essentially exact results (to 3 decimal
places) for all the representative energies. The transfer
cross-sections represent the positronium and ionization
cross-sections, which are not easy to separate from each
other. Therefore, the excellent TDH and TDCC agree-
ment may not give the insight on how the positronium or
ionization cross-sections would compare but rather shows
that the transfer cross-sections may be independent of the
convergence of the number of coupled states.

4 Conclusion

The results from the time-dependent treatment of
positron-hydrogen scattering has been presented for the
total angular momentum of zero. It has been shown that
the excitation states are accurately represented on the
grid. The TDH excitation probabilities, which are used
to calculate the excitation cross-sections have also been
demonstrated to be asymptotic. However, these TDH
excitation results have been shown not to be in good agree-
ment in general with the available TDCC results. Unfortu-
nately, there are no other similar theoretical results avail-
able to the author’s knowledge for comparison. It would
be interesting to see how the results from other non-close
coupling methods compare. The presented transfer cross-
sections are in excellent agreement, which indicate that
there are adequate pseudostates in the numerical mesh
for both the TDH and TDCC methods. Further work is
in progress to attempt to separate the positronium and
ionization cross-sections from the transfer cross-sections
for this energy range.

The author acknowledges the generosity of Physics Depart-
ment, University of Missouri-Rolla for providing the numer-
ically intensive computational facilities for this work. The
author would also like to thank Dr. D.R. Plante for provid-
ing the TDCC excitation cross-section results presented here.
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